Series Circuits

Thus far, we have dealt with circuits that include only a single device, such as a light bulb. There are, however, many circuits in which more than one device is connected to a voltage source. This lesson introduces the first of two methods by which such connections may be made, namely, series and parallel wiring.

Series Wiring

Series wiring means that the devices are connected in such a way that there is the same electric current through each device. The diagram below shows a circuit in which two different devices, represented by resistors R_{1} and R_{2}, are connected in series with a battery.

Note the following characteristics of devices connected in series:

- they are connected along the same current pathway
- if the current in one device is interrupted, the current in the other is also interrupted

Because of the series wiring, the voltage V supplied by the battery is divided between the two resistors. The diagram indicates that the portion of the voltage across R_{1} is V_{1}, while the portion across R_{2} is V_{2}, therefore,

$$
V=V_{1}+V_{2}
$$

Applying Ohm's law to each resistor shows that

$$
\begin{aligned}
V & =V_{1}+V_{2} \\
& =I R_{1}+I R_{2} \\
I R_{s} & =I\left(R_{1}+R_{2}\right)
\end{aligned}
$$

where R_{s} is called the equivalent resistance of the series circuit.
Thus, two resistors in series are equivalent to a single resistor whose resistance is

$$
R_{s}=R_{1}+R_{2}
$$

This line of reasoning can be extended to any number of resistors in series, such that:

$$
R_{s}=R_{1}+R_{2}+R_{3}+\ldots
$$

Example 1

A 6.00Ω resistor and a 3.00Ω resistor are connected in series with a 12.0 V battery. Find a) the equivalent resistance.
b) the current.
c) the power dissipated in each resistor.
d) the total power supplied by the battery.

Measuring Current

An ammeter is a device used to measure the current in a circuit. Electric currents are measured in Amperes (A). Instruments used to measure smaller currents, in the milliampere or microampere range, are called milliammeters or micorammeters. The image on the right shows a typical ammeter.

The symbol used to represent an ammeter on a schematic diagram is shown below.

In order to measure the current that flows through a device the ammeter must be connected in series with the device. For example, in the circuit shown below, the ammeter is measuring the current through Resistor A and Resistor B (all 3 are in series), but not through Resistor C (not in series).

If you wanted to measure the current through resistor C , you would place the ammeter on the same branch of the circuit as resistor C . If you wanted to measure the total current in the circuit, you would place the ammeter in series with the voltage source.

Circuits Worksheet \#5

1. The current in a 47Ω resistor is 0.12 A . This resistor is in series with a 28Ω resistor, and the series combination is connected across a battery. What is the battery voltage? (9 V)
2. Three resistors, 25,45 , and 75Ω, are connected in series, and a $0.51 A$ current passes through them. What is (a) the equivalent resistance and (b) the potential difference across the three resistors? (145 $\Omega, 74 \mathrm{~V}$)
3. A 36Ω resistor and an 18Ω resistor are connected in series across a 15 V battery. What is the voltage across (a) the 36Ω resistor and (b) the 18Ω resistor? ($10 \mathrm{~V}, 5 \mathrm{~V}$)
4. A battery dissipates 2.50 W of power in each of two 47Ω resistors connected in series. What is the voltage of the battery? $(21.7 \mathrm{~V})$
5. Three resistors, $9.0,5.0$, and 1.0Ω, are connected in series across a $24 V$ battery. Find (a) the current in, (b) the voltage across, and (c) the power dissipated in each resistor. ((a) 1.6 A (b) $14.4 \mathrm{~V}, 8 \mathrm{~V}, 1.6 \mathrm{~V}$ (c) $23.04 \mathrm{~W}, 12.8 \mathrm{~W}, 2.56 \mathrm{~W}$)
6. The current in a series circuit is 15 A . When an additional 8Ω resistor is inserted in series, the current drops to 12 A . What is the resistance in the original circuit? (32Ω)
